
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Slide 2

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

 Overview of DARPA GAPS Program and CLOSURE Project

 Technical Challenges and Solution Approach

 Demonstration

 Lessons Learned and Conclusions

 Q & A

Agenda

Slide 3

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

 Problem: Methodologies for ensuring data protections in DoD and commercial
cross-domain (XD) systems are insufficient

• Guarantees not traceable to source code/model, arduous accreditation effort

• Expensive, complex deployment, inflexible to policy changes

 GAPS Approach: Novel co-design tools for verifiable partitioning of functionality
with controlled data sharing across physically-isolated compartments

Guaranteed Architectures for Physical Security (GAPS)

Source: GAPS Proposers’ Day

State-of-the-Art

Source: GAPS Proposers’ DayChip-level attacks (e.g., Spectre) prey upon virtualization-
based solutions. GAPS is predicated on strong hardware-

based physical isolation immune to such attacks.

Slide 4

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

GAPS Programmatics

Technical Areas Current Performers Solution

TA1: Components and Interfaces for
strong isolation and high-speed
interconnects

GE Research MIND: Monitoring & Inspection Device (Ethernet/IP)

Mercury Systems ILIP: InLine Interface Processor (PCIe)

Intel
ESCAPE: Extended Secure Capabilities Architecture Platform
and Evaluation (UPI)

TA2: Co-Design Tools with novel
language extensions for correct-by-
construction compilation of cross-
domain applications

Peraton Labs
CLOSURE: Cross-domain Language-extensions for Optimal
SecUre Refactoring and Execution

TA3: Integration and Validation Northrop Grumman System Integration and Validation

Program Manager: Mr. Walter Weiss, DARPA MTO

Enclaves Languages Link Protocols Bandwidth Dates

Phase 1 2 1 1 100 Mbps 9/19-3/21

Phase 2 3 2 3 1 Gbps 3/21-9/22

Phase 3 4 2+ 4 10 Gbps 9/22-3/24

Schedule

Program Structure

Slide 5

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Pain Points in Cross-Domain Systems Development

CLOSURE is a software toolchain—a suite of program analysis, guided refactoring, partitioning, code generation,
verification, and compilation tools—that addresses critical technology gaps affecting developers, users, and operators

of cross-domain systems, which require guaranteed enforcement of data sharing policies via hardware means.

Systems / Security Analyst
• Lack of design / modeling tools

to express cross-domain intent,

evaluate partitioning feasibility,

and do performance trade-offs

Hardware/Software Developers
• Lack of tools to express and handle

data sharing concerns in program;

labor-intensive program analyses,

refactoring, hardware co-design

Admin/Operator
• Tedious manual configuration and

testing; performance bottlenecks

Test/Verification Authority
• Limited test and verification tools;

poor traceability to source; catching

incorrect rules, misconfiguration, and

bugs involves tedious manual effort

Cross-Domain Application Owner
• Inefficient lifecycle management

• Changing requirements impose

re-engineering and accreditation cost

Slide 6

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Technical Challenges and Architecture

CLOSURE covers a general problem in secure functional partitioning—with
application to avionics platforms, mosaic warfare, coalition missions,

critical infrastructure, healthcare, and other domains—where we need
fine-grained controls on information sharing and rapid adaptation of

software to changing requirements.

Modular system using established technologies

Slide 7

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

CLOSURE Workflow

Annotation-driven development
for correct-by-construction
partitions with interactive

feedback for guided refactoring

Automated generation of
cross-domain artifacts,

compilation, and verification of
partitioned program

Seamless support for
heterogeneous GAPS hardware
architectures and emulation for

pre-deployment testing

Slide 8

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

CLOSURE Visual Interface (CVI) and Emulator

• Docker containers for easy CLOSURE toolchain installation
• Developer starts CVI and works on application source code
• CVI supports entire workflow from annotation to testing

• Comprehensive end-to-end testing prior to deployment
• Diverse GAPS hardware and different host architectures (QEMU)
• Scales to distributed multi-domain scenarios

CVI based on widely used VSCode platform Emulator for multiple architectures

Slide 9

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Annotation-Driven Program Partitioning

Enclave 2
(purple)

Enclave 1
(orange)

Developer annotates original
source code to express cross-

domain security intent

Automated program rewriting and code
generation by CLOSURE tooling supports

correct, concurrent execution of partitioned
program binaries

Slide 10

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

 Enables the expression of cross-
domain security concerns. Overlays
existing code with industry standard
compilers

• Currently supports C, Java (in progress),
and Message Flow Models

• Reuse of CLE abstractions and concepts
across programming language

 For C applications, MULES converts
CLE to Clang attributes

• No modification to LLVM/Clang

• CLE labels flow down to IR for analysis

 Annotations enable toolchain to
verify policy and identify conflicts
prior to partitioning at function
boundaries (for C)

CLOSURE Language Extensions (CLE)
#pragma cle def ORANGE {
"level":"orange",
"cdf": [

{"remotelevel":"purple",
"direction": "egress",
"guarddirective": { "operation": "allow"}}

] }

#pragma cle begin ORANGE
double precise_readings[128];
#pragma cle end ORANGE

#pragma cle def XDLINKAGE_GET_A
{"level":"orange",
"cdf": [

{"remotelevel":"purple",
"direction": "bidirectional",
"guarddirective": { "operation": "allow"},
"argtaints": [],
"codtaints": ["ORANGE"],
"rettaints": ["TAG_RESPONSE_GET_A"]

} \
] }

#pragma cle begin XDLINKAGE_GET_A
double get_a() {
#pragma cle end XDLINKAGE_GET_A
…
}

va
ri

a
b

le
 a

n
n

o
ta

ti
o

n
s

fu
n

ct
io

n
 a

n
n

o
ta

ti
o

n
s

Defines CLE labels and
associated security policies

Annotate code with CLE label

Specify approved CLE label
taints for each function portion

Annotate function declaration
with CLE label

Slide 11

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

 Assign program elements to enclaves to satisfy

cross-domain constraints from annotations

 Declarative constraint solving approach
• Efficient state-of-the-art solvers: MiniZinc and Z3

• Declarative model easy to understand and extend

• Model aligned with formal verification goals

• Flexible specification of optimization objectives

 Security constraints are of three types
• Control flow constraints

• Cut can include only functions that are permitted to

be wrapped for cross-domain RPC invocation

• Data flow constraints
• Cut can include only permitted taints on inputs,

outputs, and return values on cross-domain RPC

• Taint propagation constraints
• Data flows within each enclave leading up to the cut

must preserve CLE labels

• Any security type coercion (e.g., transform of non-

shareable data into redacted-shareable data) must

occur through a function that has been audited and

annotated by the developer

Program Analysis for Correct-by-Construction Partitions

Program
Complexity

SLOC LLVM IR (B) PDG Dot (B) Nodes Edges Control
Edges

Time

Example 1 (toy
program)

57 13,681 35,665 96 265 75 0.089s

XDCC (useful,
small program)

533 92,131 361,620 919 2,769 651 0.307s

SecDesk (real-
world full web
server use-case)

26,090 10,923,916 241,309,226 177,177 2,461,700 107,053 5m6.660s

Performance of initial constraint solver based prototype

Uniform Methodology and Workflow for C, Java, and Message Flow Design Models

Slide 12

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

 Provide actionable refactoring guidance
when constraints are not satisfied

• Involve developer in steps that require human
input, i.e., to capture of application-semantics
and information-sharing restrictions

• Program analysis outputs used to automate
code generation to avoid human errors in
coding and configuration

 VSCode plugin with context-sensitive
annotation hints under development

Interactive Refactoring Guidance and Diagnostics

 Make it easy to visualize
the cut and audit functions
involved in cross-domain
information sharing

Slide 13

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

 Distributed data access is significantly
more expensive than accessing data from
local memory

 Heterogeneous hardware capability could
require limiting functionality assigned to
each enclave

 We can trade functionality across cut
subject to security constraints, e.g.,

• move average function across cut vs. passing array

Optimizing the Cross-Domain Partition

Liu, S., Zeng, D., Huang, Y., Capobianco, F., McCamant, S., Jaeger, T., and Tan, G., “Program-mandering: Quantitative Privilege

Separation,” Accepted for presentation at ACM Conference on Computer and Communications Security (CCS), 2019

Parametric optimization using integer programming to partition the wget program with budgets on:

sensitive code size (bc), cross-domain flow (bf), context-switch frequency (bs), and interface complexity (bx)

Slide 14

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Once source code has been refactored to resolve conflicts, CLOSURE auto-generates
cross-domain tooling, eliminating tedious and error-prone developer effort:

1) RPC and marshaling code 2) Hardware pipelines 3) System configuration

Automated Tooling for Cross-Domain Operation

Cross-Domain Artifacts Description Purpose

DFDL Data
Descriptions

Standards-based descriptive format aligned with NCDSMO
accreditation guidelines and the state of practice

Conveys payload formats to GAPS HW;
auto-generation of HW pipelines (VHDL)
generation for high-speed stream filtering

Rule
Specifications

Maps GAPS tags to associated filtering and redaction rules;
currently vendor specific

Auto-configures GAPS hardware; working
on standardization with CDS community

Marshaling Code Packs/unpacks in-memory data instances to fixed-size format Formats data for parsing by the CDG

Remote Procedure
Calls

Communication patterns to invoke/access data residing on
remote enclaves (i.e., one-way, network fault tolerant)

Preserves intended control-flow in
unpartitioned program

CLOSURE HAL
Configuration

Initializes CLOSURE Hardware Abstraction Layer (HAL) with
GAPS tag/device mappings for application multiplexing

Abstracts hardware concerns from
application

Slide 15

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Problem: Verify that the partitioned program
including any auto-generated code is:

Equivalent to the original program in behavior

and

Complies with cross-domain security constraints

specified through the CLE annotations

Verification in CLOSURE

Verification engine encodes relevant
program elements as constraints in SMT-
LIB2 and uses the Z3 theorem prover to
check that program satisfies desired
properties for program equivalence and
security compliance

Slide 16

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Adapt same verification approach to provide model verification for message-based distributed systems

Model-Level Checker for Message Flow Specifications

• Check design is consistent

• Fill in missing annotations using satisfying
assignments, partially specified model

• Overlay guard rules, and check they are
consistent with design

• Uses Z3 theorem prover to formally check
design translated to SMT-LIB constraints

• Modular, can be extended to include more
constraints in the future

Slide 17

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

GAPS Hardware

Source:
GE Research

Source: Mercury Systems

Monitoring & Inspection Device (MIND) InLine Interface Processor (ILIP)

Source: Intel

• Ethernet-based, bump-in-the-wire
• Payload parsing/redaction in VHDL
• Isolated Forward/reverse pipelines
• Xilinx and GE avionics M256 form-factors

• PCIe-based, Xilinx MPSoC bookends
• Segmentation/Reassembly for large

payloads (1 MB+, theoretical 1 GB)
• Redaction guided by payload offsets

• 2-Xeon CPUs connected over UPI to FPGA
• Address-filtering to allow or disallow

read/writes to shared memory pool
• UPI transfer speeds up to 10.4 GT/s

CLOSURE provides cross-domain applications with uniform API abstractions across diverse GAPS hardware with multiple
link technologies and performance characteristics – network systems, backplane buses, and chip-to-chip interconnects

Extended Secure Capabilities Architecture
Platform and Evaluation (ESCAPE)

Slide 18

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Demonstration

Slide 19

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Program Highlights

Virtual Interactive Workshop
at 2020 ERI Summit

End of Phase 1 Demonstrations (Feb 2021)
NGC AMQP-based Mission App, Message-Flow Partitioning,

Large Image Transactions with Meta-Data Redaction

Other Highlights
• Briefings to multiple transition partners and PoR
• GAPS posters and demos to be featured at ERI 2021

Slide 20

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Themes for CLOSURE Metrics
 Performance

• - Size and complexity of programs handled
(time required to analyze/verify)

- Optimization (of the cut) and end-to-end
performance (engineering in later phases)

 Language Expressiveness and Portability
• - Coverage within and across languages

- Target architectures supported

 Developer Productivity
• - How much developer effort can we reduce

(auto-generation leverage)

• - Ease of adoption
(ERI, use of VSCode, Docker, open source)

 Transition
• - Standardization & accreditation

• - Insertion into real missions

Metrics

Slide 21

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

 Physical isolation is key for protections against chip-level attacks (e.g., Spectre)

 Transition depends on a balance between innovations (e.g., CLOSURE) and community
standards for interoperability and accreditation (e.g., DFDL, RTB)

 Surgically add innovations into established technologies (e.g., LLVM, Z3, VSCode)

 Right abstractions (e.g., PDG) and technologies (e.g., constraint solvers) makes it easier
to generalize the solution (across languages, architectures, application models)

 Interactive feedback and auto-generation are both critical to developer experience

 Integrating with hardware vendors early and often reduced risk for the program

 End-to-end testing (in emulator) facilitates seamless deployment on hardware

 Gain design insights by observing novice users of your system

Lessons Learned

Slide 22

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

CLOSURE solves the problem of automated correct-by-construction partitioning of
programs, and our open-source toolchain simplifies cross-domain systems development.

Thank you for the opportunity to speak today, we look forward
to possible collaboration in the future.

GAPS is available on GitHub: https://gaps-closure.github.io/

Conclusions

Slide 23

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

CLOSURE Team

Slide 24

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Contacts

Q&A

Software

[1] "Fine-grained Program Partitioning for Security."Huang, Z.; Jaeger, T.; and Tan, G. In 14th
European Workshop on Systems Security (EuroSec), pages 21–26, 2021.

[2] "Lightweight Kernel Isolation with Virtualization and VM Functions.“ Narayanan, V.; Huang,
Y.; Tan, G.; Jaeger, T.; and Burtsev, A. 16th ACM International Conference on Virtual Execution
Environments (VEE),157–171. 2020.

[3] "Program-mandering: Quantitative Privilege Separation.“ Liu, S.; Zeng, D.; Huang, Y.;
Capobianco, F.; McCamant, S.; Jaeger, T.; and Tan, G. In 26th ACM Conference on Computer
and Communications Security (CCS), pages 1023–1040, 2019

[4] "Flightplan: Dataplane Disaggregation and Placement for P4 Programs.“ Nik Sultana, John
Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang Han, Nishanth Shyamkumar, Shivani Burad,
André DeHon, and Boon Thau Loo, University of Pennsylvania. Published at NSDI'21

[5] "Leveraging In-Network Application Awareness“ Nik Sultana. Published at NAI'21

[6] "Debugging strongly-compartmentalized distributed systems.“ Henry Zhu, Nik Sultana,
Boon Thau Loo. Published at APDCM'21.

[7] "Meta-level issues in Offloading: Scoping, Composition, Development, and their
Automation.“ André DeHon, Hans Giesen, Nik Sultana, Yuanlong Xiao. Published at LATTE'21

[8] "FDP: A Teaching and Demonstration Platform for Networking“ Heena Nagda, Rakesh
Nagda, Swapneel Sheth, Nik Sultana, Boon Thau Loo (Abstract demo) Published at SIGCSE'21

[9] "Demo: Disaggregated Dataplanes“ Heena Nagda, Rakesh Nagda, Nik Sultana, Boon Thau
Loo Published at ICDCS'21

Publications

https://gaps-closure.github.io
https://github.com/gaps-closure

DARPA:
GAPS@darpa.mil

Peraton Labs:
Michael Kaplan
mkaplan@peratonlabs.com

Rajesh Krishnan
rkrishnan@peratonlabs.com

https://gaps-closure.github.io/
https://github.com/gaps-closure
mailto:GAPS@darpa.mil
mailto:mkaplan@peratonlabs.com
mailto:rkrishnan@peratonlabs.com

