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 Problem: Methodologies for ensuring data protections in DoD and commercial 
cross-domain (XD) systems are insufficient 

• Guarantees not traceable to source code/model, arduous accreditation effort 

• Expensive, complex deployment, inflexible to policy changes

 GAPS Approach: Novel co-design tools for verifiable partitioning of functionality 
with controlled data sharing across physically-isolated compartments

Guaranteed Architectures for Physical Security (GAPS)

Source: GAPS Proposers’ Day

State-of-the-Art

Source: GAPS Proposers’ DayChip-level attacks (e.g., Spectre) prey upon virtualization-
based solutions. GAPS is predicated on strong hardware-

based physical isolation immune to such attacks.
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GAPS Programmatics

Technical Areas Current Performers Solution

TA1: Components and Interfaces for 
strong isolation and high-speed 
interconnects

GE Research MIND: Monitoring & Inspection Device (Ethernet/IP)

Mercury Systems ILIP: InLine Interface Processor (PCIe)

Intel
ESCAPE: Extended Secure Capabilities Architecture Platform 
and Evaluation (UPI)

TA2: Co-Design Tools with novel 
language extensions for correct-by-
construction compilation of cross-
domain applications

Peraton Labs
CLOSURE: Cross-domain Language-extensions for Optimal 
SecUre Refactoring and Execution

TA3: Integration and Validation Northrop Grumman System Integration and Validation

Program Manager: Mr. Walter Weiss, DARPA MTO

Enclaves Languages Link Protocols Bandwidth Dates

Phase 1 2 1 1 100 Mbps 9/19-3/21

Phase 2 3 2 3 1 Gbps 3/21-9/22

Phase 3 4 2+ 4 10 Gbps 9/22-3/24

Schedule

Program Structure
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Pain Points in Cross-Domain Systems Development

CLOSURE is a software toolchain—a suite of program analysis, guided refactoring, partitioning, code generation, 
verification, and compilation tools—that addresses critical technology gaps affecting developers, users, and operators 

of cross-domain systems, which require guaranteed enforcement of data sharing policies via hardware means.

Systems / Security Analyst 
• Lack of design / modeling tools

to express cross-domain intent, 

evaluate partitioning feasibility, 

and do performance trade-offs

Hardware/Software Developers
• Lack of tools to express and handle 

data sharing concerns in program; 

labor-intensive program analyses, 

refactoring, hardware co-design

Admin/Operator
• Tedious manual configuration and 

testing; performance bottlenecks

Test/Verification Authority
• Limited test and verification tools; 

poor traceability to source; catching 

incorrect rules, misconfiguration, and 

bugs involves tedious manual effort

Cross-Domain Application Owner
• Inefficient lifecycle management

• Changing requirements impose 

re-engineering and accreditation cost



Slide 6

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

Technical Challenges and Architecture

CLOSURE covers a general problem in secure functional partitioning—with 
application to avionics platforms, mosaic warfare, coalition missions, 

critical infrastructure, healthcare, and other domains—where we need 
fine-grained controls on information sharing and rapid adaptation of 

software to changing requirements.

Modular system using established technologies
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CLOSURE Workflow

Annotation-driven development 
for correct-by-construction 
partitions with interactive 

feedback for guided refactoring

Automated generation of 
cross-domain artifacts, 

compilation, and verification of 
partitioned program

Seamless support for 
heterogeneous GAPS hardware 
architectures and emulation for 

pre-deployment testing
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CLOSURE Visual Interface (CVI) and Emulator

• Docker containers for easy CLOSURE toolchain installation
• Developer starts CVI and works on application source code
• CVI supports entire workflow from annotation to testing

• Comprehensive end-to-end testing prior to deployment
• Diverse GAPS hardware and different host architectures (QEMU)
• Scales to distributed multi-domain scenarios

CVI based on widely used VSCode platform Emulator for multiple architectures
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Annotation-Driven Program Partitioning

Enclave 2 
(purple)

Enclave 1 
(orange)

Developer annotates original 
source code to express cross-

domain security intent

Automated program rewriting and code 
generation by CLOSURE tooling supports 

correct, concurrent execution of partitioned 
program binaries
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 Enables the expression of cross-
domain security concerns. Overlays 
existing code with industry standard 
compilers

• Currently supports C, Java (in progress), 
and Message Flow Models

• Reuse of CLE abstractions and concepts 
across programming language

 For C applications, MULES converts 
CLE to Clang attributes

• No modification to LLVM/Clang

• CLE labels flow down to IR for analysis

 Annotations enable toolchain to 
verify policy and identify conflicts 
prior to partitioning at function 
boundaries (for C)

CLOSURE Language Extensions (CLE)
#pragma cle def ORANGE {
"level":"orange",
"cdf": [

{"remotelevel":"purple", 
"direction": "egress", 
"guarddirective": { "operation": "allow"}}

] }

#pragma cle begin ORANGE
double precise_readings[128];
#pragma cle end ORANGE

#pragma cle def XDLINKAGE_GET_A
{"level":"orange",
"cdf": [

{"remotelevel":"purple", 
"direction": "bidirectional", 
"guarddirective": { "operation": "allow"}, 
"argtaints": [], 
"codtaints": ["ORANGE"], 
"rettaints": ["TAG_RESPONSE_GET_A"] 

} \
] }

#pragma cle begin XDLINKAGE_GET_A
double get_a() {
#pragma cle end XDLINKAGE_GET_A 
…
}
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Defines CLE labels and 
associated security policies

Annotate code with CLE label

Specify approved CLE label 
taints for each function portion

Annotate function declaration 
with CLE label
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 Assign program elements to enclaves to satisfy 

cross-domain constraints from annotations

 Declarative constraint solving approach
• Efficient state-of-the-art solvers: MiniZinc and Z3

• Declarative model easy to understand and extend

• Model aligned with formal verification goals

• Flexible specification of optimization objectives

 Security constraints are of three types
• Control flow constraints

• Cut can include only functions that are permitted to 

be wrapped for cross-domain RPC invocation

• Data flow constraints
• Cut can include only permitted taints on inputs, 

outputs, and return values on cross-domain RPC

• Taint propagation constraints
• Data flows within each enclave leading up to the cut 

must  preserve CLE labels

• Any security type coercion (e.g., transform of non-

shareable data into redacted-shareable data) must 

occur through a function that has been audited and 

annotated by the developer

Program Analysis for Correct-by-Construction Partitions

Program 
Complexity

SLOC LLVM IR (B) PDG Dot (B) Nodes Edges Control 
Edges

Time

Example 1 (toy 
program)

57 13,681 35,665 96 265 75 0.089s

XDCC (useful, 
small program)

533 92,131 361,620 919 2,769 651 0.307s

SecDesk (real-
world full web 
server use-case)

26,090 10,923,916 241,309,226 177,177 2,461,700 107,053 5m6.660s

Performance of initial constraint solver based prototype

Uniform Methodology and Workflow for C, Java, and Message Flow Design Models
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 Provide actionable refactoring guidance 
when constraints are not satisfied

• Involve developer in steps that require human 
input, i.e., to capture of application-semantics 
and information-sharing restrictions 

• Program analysis outputs used to automate 
code generation to avoid human errors in 
coding and configuration

 VSCode plugin with context-sensitive 
annotation hints under development

Interactive Refactoring Guidance and Diagnostics

 Make it easy to visualize 
the cut and audit functions 
involved in cross-domain 
information sharing



Slide 13

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

 Distributed data access is significantly 
more expensive than accessing data from 
local memory

 Heterogeneous hardware capability could 
require limiting functionality assigned to 
each enclave

 We can trade functionality across cut 
subject to security constraints, e.g.,

• move average function across cut vs. passing array

Optimizing the Cross-Domain Partition

Liu, S., Zeng, D., Huang, Y., Capobianco, F., McCamant, S., Jaeger, T., and Tan, G., “Program-mandering: Quantitative Privilege 

Separation,” Accepted for presentation at ACM Conference on Computer and Communications Security (CCS), 2019

Parametric optimization using integer programming to partition the wget program with budgets on: 

sensitive code size (bc), cross-domain flow (bf), context-switch frequency (bs), and interface complexity (bx)
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Once source code has been refactored to resolve conflicts, CLOSURE auto-generates 
cross-domain tooling, eliminating tedious and error-prone developer effort:

1) RPC and marshaling code  2) Hardware pipelines  3) System configuration

Automated Tooling for Cross-Domain Operation

Cross-Domain Artifacts Description Purpose

DFDL Data 
Descriptions

Standards-based descriptive format aligned with NCDSMO 
accreditation guidelines and the state of practice

Conveys payload formats to GAPS HW; 
auto-generation of HW pipelines (VHDL) 
generation for high-speed stream filtering

Rule 
Specifications

Maps GAPS tags to associated filtering and redaction rules; 
currently vendor specific

Auto-configures GAPS hardware; working 
on standardization with CDS community

Marshaling Code Packs/unpacks in-memory data instances to fixed-size format Formats data for parsing by the CDG

Remote Procedure 
Calls

Communication patterns to invoke/access data residing on 
remote enclaves (i.e., one-way, network fault tolerant)

Preserves intended control-flow in 
unpartitioned program

CLOSURE HAL 
Configuration

Initializes CLOSURE Hardware Abstraction Layer (HAL) with 
GAPS tag/device mappings for application multiplexing

Abstracts hardware concerns from 
application
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Problem:  Verify that the partitioned program 
including any auto-generated code is:

Equivalent to the original program in behavior

and

Complies with cross-domain security constraints 

specified through the CLE annotations

Verification in CLOSURE

Verification engine encodes relevant
program elements as constraints in SMT-
LIB2 and uses the Z3 theorem prover to
check that program satisfies desired
properties for program equivalence and
security compliance
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Adapt same verification approach to provide model verification for message-based distributed systems

Model-Level Checker for Message Flow Specifications

• Check design is consistent

• Fill in missing annotations using satisfying 
assignments, partially specified model

• Overlay guard rules, and check they are 
consistent with design

• Uses Z3 theorem prover to formally check 
design translated to SMT-LIB constraints

• Modular, can be extended to include more 
constraints in the future



Slide 17

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

GAPS Hardware

Source: 
GE Research

Source: Mercury Systems

Monitoring & Inspection Device (MIND) InLine Interface Processor (ILIP)

Source: Intel

• Ethernet-based, bump-in-the-wire
• Payload parsing/redaction in VHDL
• Isolated Forward/reverse pipelines
• Xilinx and GE avionics M256 form-factors

• PCIe-based, Xilinx MPSoC bookends
• Segmentation/Reassembly for large 

payloads (1 MB+, theoretical 1 GB)
• Redaction guided by payload offsets

• 2-Xeon CPUs connected over UPI to FPGA
• Address-filtering to allow or disallow 

read/writes to shared memory pool
• UPI transfer speeds up to 10.4 GT/s

CLOSURE provides cross-domain applications with uniform API abstractions across diverse GAPS hardware with multiple 
link technologies and performance characteristics – network systems, backplane buses, and chip-to-chip interconnects

Extended Secure Capabilities Architecture 
Platform and Evaluation (ESCAPE)
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Demonstration
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Program Highlights

Virtual Interactive Workshop
at 2020 ERI Summit

End of Phase 1 Demonstrations (Feb 2021)
NGC AMQP-based Mission App, Message-Flow Partitioning, 

Large Image Transactions with Meta-Data Redaction 

Other Highlights
• Briefings to multiple transition partners and PoR
• GAPS posters and demos to be featured at ERI 2021
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Themes for CLOSURE Metrics
 Performance

• - Size and complexity of programs handled 
(time required to analyze/verify)

- Optimization (of the cut) and end-to-end  
performance (engineering in later phases)

 Language Expressiveness and Portability
• - Coverage within and across languages

- Target architectures supported

 Developer Productivity
• - How much developer effort can we reduce

(auto-generation leverage)

• - Ease of adoption 
(ERI, use of VSCode, Docker, open source)

 Transition
• - Standardization & accreditation

• - Insertion into real missions

Metrics
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 Physical isolation is key for protections against chip-level attacks (e.g., Spectre)

 Transition depends on a balance between innovations (e.g., CLOSURE) and community 
standards for interoperability and accreditation (e.g., DFDL, RTB)

 Surgically add innovations into established technologies (e.g., LLVM, Z3, VSCode) 

 Right abstractions (e.g., PDG) and technologies (e.g., constraint solvers) makes it easier 
to generalize the solution (across languages, architectures, application models)

 Interactive feedback and auto-generation are both critical to developer experience

 Integrating with hardware vendors early and often reduced risk for the program

 End-to-end testing (in emulator) facilitates seamless deployment on hardware

 Gain design insights by observing novice users of your system

Lessons Learned
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CLOSURE solves the problem of automated correct-by-construction partitioning of 
programs, and our open-source toolchain simplifies cross-domain systems development.

Thank you for the opportunity to speak today, we look forward 
to possible collaboration in the future. 

GAPS is available on GitHub: https://gaps-closure.github.io/

Conclusions
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CLOSURE Team
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